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Background assumptions
(i) Ordinary predicates express relations between individuals.
(ii) Singular indefinites express existential quantification.

Three inference schemata

• Existential Impact
• Extensionality
• Specificity

1.  Transparency and Specificity

☞



Existential Impact

From
x Rs an N. 

infer:
There is at least one N.



Extensionality

From
x Rs an N. 
Every N is an M.
Every M is an N.

infer:
 x Rs an M. 



Specificity

From
x Rs an N. 

infer:
 Some (specific) individual is Red by x. 



Specificity

From
x Rs an N. 

infer:
 Some (specific) individual is Red by x. 

2. Transparency and Specificity
R is opaque 

if the above inference schema is invalid.



Specificity

From
x Rs an N. 

infer:
 Some (specific) individual is Red by x. 

N. B.

Opacity does not imply intensionality
(= invalidity of Extensionality) 

2. Transparency and Specificity
R is opaque 

if the above inference schema is invalid.



R is opaque 
if the above inference schema is invalid.

2. Opacity and Monotonicity

Examples

(0a) I owe you a horse. Buridanus (1350), Geach (1965)

(b) Jones is seeking a lion. Quine (1956)

(c) Tom’s horse resembles a unicorn. Zimmermann (1993)

(d) Jones hired an assistent. Moltmann (1997)



R is opaque 
if the above inference schema is invalid.

2. Opacity and Monotonicity

Examples

(0a) I owe you a horse. 

(b) Jones is seeking a lion. 

(c) Tom’s horse resembles a unicorn. 

(d) Jones hired an assistent. ☞



Indefinite Objects

Indefinite Objects Thomas Ede Zimmermann, Frankfurt

0. Opacity in Certain Verbs Quine (1960)
(0a) I owe you a horse. Buridanus (1350), Geach (1965)
(b) Jones is seeking a lion. Quine (1956)
(c) Tom’s horse resembles unicorn. Zimmermann (1993)
(d) Jones hired an assistent. Moltmann (1997)

Paraphrases in terms of strange objects
(0a') I owe you an unspecific horse.
(b') Jones is seeking an intentional lion.
(c') Tom’s horse resembles a generic unicorn.
(d') Jones hired a would-be assistent.

Paraphrases in terms of propositinal attitudes
(0a") I am obliged to see to it that it will be the case that I give you a horse.
(b") Jones is trying for it to be the case that Jones finds a lion.
(c") Given its outward appearance, Tom’s horse could be a unicorn.
(d") Jones saw to it that there was someone who is an assistant.

1. Monotonicity Inferences

(1) Jones is looking for a green sweater.   
∴∴∴∴ Jones is looking for a sweater.

(2) Jones is wearing a green sweater.      
∴∴∴∴ Jones is wearing a sweater.

(M↑) x is looking for a P.           upward monotonicity
∴∴∴∴ x is looking for a Q. [P≤Q]

(M↓) x is looking for a Q.           
∴∴∴∴ x is looking for a P. [P≤Q]

(3) seek'(x,Q) = try'(x,(Qy) find'(x,y)) Quine (1958, 1960), Montague (1968, 1970)

(4)
    Jones seeks a sweater

[λx try'(x,(∃y) [sweater'(y) ∧ find'(x,y)])](Jones')
≡≡ try'(Jones',(∃y) [sweater'(y) ∧ find'(Jones',y)])

Jones
Jones'

seeks a sweater
[λQ λx try'(x,(Qy) find'(x,y))] (λQ (∃y) [sweater'(y) ∧ Q(y)])

≡≡ λx try'(x,(∃y) [sweater'(y) ∧ find'(x,y)])

seeks
λQ λx try'(x,(Qy) find'(x,y))

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

(5) Every man loves a woman.

1
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T. E. Zimmermann

(6)
    Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.   
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])    
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]       
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])    
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2
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Indefinite Objects
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3. Opacity by Coercion

(32) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])    
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(39)     Jones seeks a sweater
(∃Q) seek'(Jones',[λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)]])

a sweater
λΠ (∃Q) Π(λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)])

a
λΣ λΠ (∃Q)[Σ(Q) ∧ P(Q)]

sweater
↑sweater'

Q
Jones seeks itQ
seek'(Jones',Q)

Jones
Jones'

seeks itQ
seek'(Q)

seeks
seek'

itQ
Q

(40) Jones is looking for a green sweater, but Jones is not looking for a sweater.

(45) Exact Match Analysis (type adaptation)
seek'(x,P)

iff x’s search is successful just in case being found by x is in the extension of ∃P.
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T. E. Zimmermann

(50)      Jones seeks a green sweater
(∃P) [P ≤ [λx [green'(x) ∧ sweater'(x)]] ∧ seek'(Jones',P)]

a green sweater
λQ (∃P) [P ≤ [λx [green'(x) ∧ sweater'(x)]] ∧ Q(P)]

a
λP λQ (∃P) [P(P) ∧ Q(P)]

green sweater
λQ Q ≤ [λx [green'(x) ∧ sweater'(x)]]

green sweater
λx [green'(x) ∧ sweater'(x)]

green
green'

sweater
sweater'

P
Jones seeks itP

seek'(Jones',P)

… …

(51)     (∃P) [P ≤ sweater'(x) ∧ seek'(Jones',P)]

• Unspecific objects
seek expresses a relation between a subject (the seeker) and an unspecific
object of search.

• Exact match
The relation expressed by seek holds true if the seeker’s goal is reached just
in case (s)he finds a specific object with the unspecific object as a property.

• Type coercion
The indefinite object is re-interpreted as (existentially) quantifying over un-
specific objects that are more general than the property expressed by its re-
strictor.

4. Specificity and Related Topics
4.1 Specific Readings of Indefinites

(66) Argument Lowering [naive version] Zimmermann (1993)
If ℜ is a relation between subjects and unspecific objects, then the de re
construal of ℜ  is that relation that holds between individuals x and y
whenever ℜ holds between x and being y.

(66') Argument Lowering [Kaplanian version] Kaplan (1969, Zimmermann (to appear)
If ℜ is a relation between subjects and unspecific objects, then the de re
construal of ℜ  is that relation that holds between individuals x and y
whenever ℜ holds between x and an unspecific object that is vivid for x and
individuates y.

(∃) x is looking for a P.           
∴∴∴∴ There is at least one P.

4.2 Definite Descriptions

(69) Jones is looking for the boss. 
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4.3 Bare Plurals

(81a) Max is looking for a book on Danish cooking.
(b) Max is looking for books on Danish cooking. 

(82)

     Max seeks books on Danish cooking
(∃P) [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P) ∧ seek'(Max',P)]

books on Danish cooking
λQ (∃P) [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P) ∧ Q(P)]

[indefinite]
λP λQ (∃P) [P(P) ∧ Q(P)]

books on Danish cooking
λP [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P)]

book on Danish cooking
λx [book'(x) ∧ on'(Danish'(cooking'))(x)]

book
book'

on Danish cooking
on'(Danish'(cooking'))

… …

[plural]
λQ λP [P ≤ Q ∧ plurality'(Q)]

P
Max seeks themP

seek'(Max',P)

… …

(83) plurality' = λP � (∃x) (∃x) [P(x) ∧ P(y) ∧ x ≠ y]

(84) Hans wanted to put belladonnas into the fruit salad, because he mistook them for [real] cherries.

(85) Hans wants to eat belladonnas and Hans mistakes them for cherries.

(86)    want'(Hans',(∃x) (∃y) [belladonna'(x) ∧ belladonna'(y) ∧ x ≠ y ∧ eat'(Hans',x) ∧ eat'(Hans',y)])
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(87)

     Hans wants to eat belladonnas
λx want'(Hans',(∃P) [P ≤ belladonna' ∧ plurality'(P) ∧ (∀y) [P(y) → eat'(Hans',y)]])

Hans
Hans'

wants to eat belladonnas
λx want'(x,(∃P) [P ≤ belladonna' ∧ plurality'(P) ∧ (∀y) [P(y) → eat'(x,y)]])

wants
λP λx want'(x,P(x))

eat belladonnas
λx (∃P) [P ≤ belladonna' ∧ plurality'(P) ∧ (∀y) [P(y) → eat'(x,y)]]

belladonnas
λQ (∃P) [P ≤ belladonna' ∧ plurality'(P) ∧ Q(P)]

… …

P
[to] eat themP

λx (∀y) [P(y) → eat'(x,y)]

eat
λP λx [(∀y) [P(y) → eat'(x,y)]

eat
eat'



(89)
     Hans mistakes themP for cherries

(∃Q) [Q ≤ cherry ∧ plurality'(Q) ∧ (∀y) [P(y) → mistake'(y)(Q)(Hans')]]

cherries
λQ (∃Q) [Q ≤ cherry ∧ plurality'(Q) ∧ Q(Q)]

… …

Q
Hans mistakes themP for themQ

(∀y) [P(y) → mistake'(y)(Q)(Hans')]

Hans
Hans'

mistakes themP for themQ

λx (∀y) [P(y) → mistake'(y)(Q)(x)]

mistakes
λQ λx (∀y) [P(y) → mistake'(y)(Q)(x)]

mistakes
λP λQ λx (∀y) [P(y) → mistake'(y)(Q)(x)]

mistakes
mistake'

themP

P

[for] them
Q



(90) mistake' = λy λP λx [believe'(x,P(y)) ∧ ¬P(y)]



     Hans wants to eat belladonnas
(∃P) [P ≤ belladonna' ∧ plurality'(P) ∧

(∃Q) [Q ≤ cherry ∧ plurality'(Q) ∧ mistake'(P)(Q)(Hans')]]]

belladonnas
λQ (∃P) [P ≤ belladonna' ∧

plurality'(P) ∧ Q(P)]

… …

P
[want'(Hans',(∀y) [P(y) → eat'(Hans',y)]) ∧

(∃Q) [Q ≤ cherry ∧ plurality'(Q)
∧ mistake'(P)(Q)(Hans') ] ]

Hans wants to eat themP

want'(Hans',(∀y) [P(y) → eat'(Hans',y)])

Hans
Hans'

wants to eat themP

λx want'(x,(∀y) [P(y) → eat'(x,y)])

wants
λP λx want'(x,P(x))

[to] eat themP

λx (∀y) [P(y) → eat'(x,y)]

… …

and
∧ (89)


