
Bare Plurals and Specificity
Thomas Ede Zimmermann

Frankfurt (Main)

1. Transparency and Specificity
2. Opacity and Monotonicity
3. Unspecific vs. underspecific readings
4. Bare Plurals and Belladonnas

Background assumptions
(i) Ordinary predicates express relations between individuals.
(ii) Singular indefinites express existential quantification.

Three inference schemata

• Existential Impact
• Extensionality
• Specificity

1. Transparency and Specificity

☞

Existential Impact

From
x Rs an N.

infer:
There is at least one N.

Extensionality

From
x Rs an N.
Every N is an M.
Every M is an N.

infer:
 x Rs an M.

Specificity

From
x Rs an N.

infer:
 Some (specific) individual is Red by x.

Specificity

From
x Rs an N.

infer:
 Some (specific) individual is Red by x.

2. Transparency and Specificity
R is opaque

if the above inference schema is invalid.

Specificity

From
x Rs an N.

infer:
 Some (specific) individual is Red by x.

N. B.

Opacity does not imply intensionality
(= invalidity of Extensionality)

2. Transparency and Specificity
R is opaque

if the above inference schema is invalid.

R is opaque
if the above inference schema is invalid.

2. Opacity and Monotonicity

Examples

(0a) I owe you a horse. Buridanus (1350), Geach (1965)

(b) Jones is seeking a lion. Quine (1956)

(c) Tom’s horse resembles a unicorn. Zimmermann (1993)

(d) Jones hired an assistent. Moltmann (1997)

R is opaque
if the above inference schema is invalid.

2. Opacity and Monotonicity

Examples

(0a) I owe you a horse.

(b) Jones is seeking a lion.

(c) Tom’s horse resembles a unicorn.

(d) Jones hired an assistent. ☞

Indefinite Objects

Indefinite Objects Thomas Ede Zimmermann, Frankfurt

0. Opacity in Certain Verbs Quine (1960)
(0a) I owe you a horse. Buridanus (1350), Geach (1965)
(b) Jones is seeking a lion. Quine (1956)
(c) Tom’s horse resembles unicorn. Zimmermann (1993)
(d) Jones hired an assistent. Moltmann (1997)

Paraphrases in terms of strange objects
(0a') I owe you an unspecific horse.
(b') Jones is seeking an intentional lion.
(c') Tom’s horse resembles a generic unicorn.
(d') Jones hired a would-be assistent.

Paraphrases in terms of propositinal attitudes
(0a") I am obliged to see to it that it will be the case that I give you a horse.
(b") Jones is trying for it to be the case that Jones finds a lion.
(c") Given its outward appearance, Tom’s horse could be a unicorn.
(d") Jones saw to it that there was someone who is an assistant.

1. Monotonicity Inferences

(1) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for a sweater.

(2) Jones is wearing a green sweater.
∴∴∴∴ Jones is wearing a sweater.

(M↑) x is looking for a P. upward monotonicity
∴∴∴∴ x is looking for a Q. [P≤Q]

(M↓) x is looking for a Q.
∴∴∴∴ x is looking for a P. [P≤Q]

(3) seek'(x,Q) = try'(x,(Qy) find'(x,y)) Quine (1958, 1960), Montague (1968, 1970)

(4)
 Jones seeks a sweater

[λx try'(x,(∃y) [sweater'(y) ∧ find'(x,y)])](Jones')
≡≡ try'(Jones',(∃y) [sweater'(y) ∧ find'(Jones',y)])

Jones
Jones'

seeks a sweater
[λQ λx try'(x,(Qy) find'(x,y))] (λQ (∃y) [sweater'(y) ∧ Q(y)])

≡≡ λx try'(x,(∃y) [sweater'(y) ∧ find'(x,y)])

seeks
λQ λx try'(x,(Qy) find'(x,y))

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

(5) Every man loves a woman.

1

Indefinite Objects

Indefinite Objects Thomas Ede Zimmermann, Frankfurt

0. Opacity in Certain Verbs Quine (1960)
(0a) I owe you a horse. Buridanus (1350), Geach (1965)
(b) Jones is seeking a lion. Quine (1956)
(c) Tom’s horse resembles unicorn. Zimmermann (1993)
(d) Jones hired an assistent. Moltmann (1997)

Paraphrases in terms of strange objects
(0a') I owe you an unspecific horse.
(b') Jones is seeking an intentional lion.
(c') Tom’s horse resembles a generic unicorn.
(d') Jones hired a would-be assistent.

Paraphrases in terms of propositinal attitudes
(0a") I am obliged to see to it that it will be the case that I give you a horse.
(b") Jones is trying for it to be the case that Jones finds a lion.
(c") Given its outward appearance, Tom’s horse could be a unicorn.
(d") Jones saw to it that there was someone who is an assistant.

1. Monotonicity Inferences

(1) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for a sweater.

(2) Jones is wearing a green sweater.
∴∴∴∴ Jones is wearing a sweater.

(M↑) x is looking for a P. upward monotonicity
∴∴∴∴ x is looking for a Q. [P≤Q]

(M↓) x is looking for a Q.
∴∴∴∴ x is looking for a P. [P≤Q]

(3) seek'(x,Q) = try'(x,(Qy) find'(x,y)) Quine (1958, 1960), Montague (1968, 1970)

(4)
 Jones seeks a sweater

[λx try'(x,(∃y) [sweater'(y) ∧ find'(x,y)])](Jones')
≡≡ try'(Jones',(∃y) [sweater'(y) ∧ find'(Jones',y)])

Jones
Jones'

seeks a sweater
[λQ λx try'(x,(Qy) find'(x,y))] (λQ (∃y) [sweater'(y) ∧ Q(y)])

≡≡ λx try'(x,(∃y) [sweater'(y) ∧ find'(x,y)])

seeks
λQ λx try'(x,(Qy) find'(x,y))

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

(5) Every man loves a woman.

1

Indefinite Objects

Indefinite Objects Thomas Ede Zimmermann, Frankfurt

0. Opacity in Certain Verbs Quine (1960)
(0a) I owe you a horse. Buridanus (1350), Geach (1965)
(b) Jones is seeking a lion. Quine (1956)
(c) Tom’s horse resembles unicorn. Zimmermann (1993)
(d) Jones hired an assistent. Moltmann (1997)

Paraphrases in terms of strange objects
(0a') I owe you an unspecific horse.
(b') Jones is seeking an intentional lion.
(c') Tom’s horse resembles a generic unicorn.
(d') Jones hired a would-be assistent.

Paraphrases in terms of propositinal attitudes
(0a") I am obliged to see to it that it will be the case that I give you a horse.
(b") Jones is trying for it to be the case that Jones finds a lion.
(c") Given its outward appearance, Tom’s horse could be a unicorn.
(d") Jones saw to it that there was someone who is an assistant.

1. Monotonicity Inferences

(1) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for a sweater.

(2) Jones is wearing a green sweater.
∴∴∴∴ Jones is wearing a sweater.

(M↑) x is looking for a P. upward monotonicity
∴∴∴∴ x is looking for a Q. [P≤Q]

(M↓) x is looking for a Q.
∴∴∴∴ x is looking for a P. [P≤Q]

(3) seek'(x,Q) = try'(x,(Qy) find'(x,y)) Quine (1958, 1960), Montague (1968, 1970)

(4)
 Jones seeks a sweater

[λx try'(x,(∃y) [sweater'(y) ∧ find'(x,y)])](Jones')
≡≡ try'(Jones',(∃y) [sweater'(y) ∧ find'(Jones',y)])

Jones
Jones'

seeks a sweater
[λQ λx try'(x,(Qy) find'(x,y))] (λQ (∃y) [sweater'(y) ∧ Q(y)])

≡≡ λx try'(x,(∃y) [sweater'(y) ∧ find'(x,y)])

seeks
λQ λx try'(x,(Qy) find'(x,y))

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

(5) Every man loves a woman.

1

T. E. Zimmermann

(6)
 Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2

T. E. Zimmermann

(6)
 Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2

T. E. Zimmermann

(6)
 Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2

T. E. Zimmermann

(6)
 Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2

T. E. Zimmermann

(6)
 Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2

T. E. Zimmermann

(6)
 Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2

T. E. Zimmermann

(6)
 Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2

T. E. Zimmermann

(6)
 Jones seeks a sweater

[λQ (∃y) [sweater'(y) ∧ Q(y)]] (λy try'(Jones',find'(Jones',y)))
≡≡ (∃y) [sweater'(y) ∧ try'(Jones',find'(Jones',y))]

a sweater
λQ (∃y) [sweater'(y) ∧ Q(y)]

y

Jones seeks it y

[λx try'(x,find'(x,y))](Jones')
≡≡ try'(Jones',find'(Jones',y))

Jones
Jones'

seeks it y

[λQ λx try'(x,(Qy) find'(x,y))](λP P(y))
≡≡ λx try'(x,find'(x,y))

seeks
λQ λx try'(x,(Qy) find'(x,y))

it y

λP P(y)

(8) Quine + Hintikka Analysis cf. Hinitikka (1969)

seek'(x,Q)
[iff try'(x,(Qy) find'(x,y))]
iff being found by x is in the extension of Q whenever x’s search is successful.

(9) Success-Oriented Analysis Moltmann (1997)

seek'(x,Q)
iff x’s search is successful whenever being found by x is in the extension of Q.

(10) Exact Match Analysis
seek'(x,Q)

iff x’s search is successful just in case being found by x is in the extension of Q.

2. The Monotonicity Problem

(12) Jones is looking for a green sweater.
∴∴∴∴ Jones is looking for something.

(13) something … = (∃x) …

(14b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ try'(Jones',(∃y) find'(Jones,y)) unspecific

(15b) (∃y)[sweater'(y) ∧ green'(y) ∧ try'(Jones',find'(Jones',y))]
∴∴∴∴ (∃y) try'(Jones',find'(Jones,y)) specific

(16b) try'(Jones',(∃y)[sweater'(y) ∧ green'(y) ∧ find'(Jones',y)])
∴∴∴∴ (∃Q) try'(Jones',(Qy) find'(Jones',y)) underspecific

(17) something … = (∃Q) …

(18) Jones is looking for something Smith is looking for.

(21b) (∃y) [try'(Smith',find'(Smith',y)) ∧ try'(Jones',find'(Jones',y))]

(22b) try'(Jones',(∃y)[try'(Smith',find'(Smith',y)) ∧ find'(Jones',y)])

2

Indefinite Objects

(23b) (∃Q) [try'(Smith',(Qy) find'(Smith',y)) ∧ try'(Jones',(Qy) find'(Jones',y))]

(24) I owe you nothing. ____
∴∴∴∴ I owe you something.

(27b) (∃Q)[try'(Smith',(Qy) find'(Smith',y)) ∧ (Qy) try'(Jones',find'(Jones',y))]

(∃) x is looking for a P. ____
∴∴∴∴ x is looking for something.

(∃b) try'(x,(∃y)[P(y) ∧ find'(x,y)])
∴∴∴∴ (∃Q) try'(x,(Qy) find'(x,y))

(28) Jones is looking for a green sweater.
Smith is looking for a pink hat.

∴∴∴∴ Jones is looking for something Smith is looking for (too).

(CO) x is looking for a P. inference to a common objective
y is looking for a Q. _______________

∴∴∴∴ x is looking for something y is looking for.

3. Opacity by Coercion

(32) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[sweater'(Q) ∧ seek'(Jones',Q)]

(33) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[↑sweater'(Q) ∧ seek'(Jones',Q)]

(39) Jones seeks a sweater
(∃Q) seek'(Jones',[λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)]])

a sweater
λΠ (∃Q) Π(λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)])

a
λΣ λΠ (∃Q)[Σ(Q) ∧ P(Q)]

sweater
↑sweater'

Q
Jones seeks itQ
seek'(Jones',Q)

Jones
Jones'

seeks itQ
seek'(Q)

seeks
seek'

itQ
Q

(40) Jones is looking for a green sweater, but Jones is not looking for a sweater.

(45) Exact Match Analysis (type adaptation)
seek'(x,P)

iff x’s search is successful just in case being found by x is in the extension of ∃P.

´

3

Indefinite Objects

(23b) (∃Q) [try'(Smith',(Qy) find'(Smith',y)) ∧ try'(Jones',(Qy) find'(Jones',y))]

(24) I owe you nothing. ____
∴∴∴∴ I owe you something.

(27b) (∃Q)[try'(Smith',(Qy) find'(Smith',y)) ∧ (Qy) try'(Jones',find'(Jones',y))]

(∃) x is looking for a P. ____
∴∴∴∴ x is looking for something.

(∃b) try'(x,(∃y)[P(y) ∧ find'(x,y)])
∴∴∴∴ (∃Q) try'(x,(Qy) find'(x,y))

(28) Jones is looking for a green sweater.
Smith is looking for a pink hat.

∴∴∴∴ Jones is looking for something Smith is looking for (too).

(CO) x is looking for a P. inference to a common objective
y is looking for a Q. _______________

∴∴∴∴ x is looking for something y is looking for.

3. Opacity by Coercion

(32) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[sweater'(Q) ∧ seek'(Jones',Q)]

(33) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[↑sweater'(Q) ∧ seek'(Jones',Q)]

(39) Jones seeks a sweater
(∃Q) seek'(Jones',[λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)]])

a sweater
λΠ (∃Q) Π(λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)])

a
λΣ λΠ (∃Q)[Σ(Q) ∧ P(Q)]

sweater
↑sweater'

Q
Jones seeks itQ
seek'(Jones',Q)

Jones
Jones'

seeks itQ
seek'(Q)

seeks
seek'

itQ
Q

(40) Jones is looking for a green sweater, but Jones is not looking for a sweater.

(45) Exact Match Analysis (type adaptation)
seek'(x,P)

iff x’s search is successful just in case being found by x is in the extension of ∃P.

´

3

Indefinite Objects

(23b) (∃Q) [try'(Smith',(Qy) find'(Smith',y)) ∧ try'(Jones',(Qy) find'(Jones',y))]

(24) I owe you nothing. ____
∴∴∴∴ I owe you something.

(27b) (∃Q)[try'(Smith',(Qy) find'(Smith',y)) ∧ (Qy) try'(Jones',find'(Jones',y))]

(∃) x is looking for a P. ____
∴∴∴∴ x is looking for something.

(∃b) try'(x,(∃y)[P(y) ∧ find'(x,y)])
∴∴∴∴ (∃Q) try'(x,(Qy) find'(x,y))

(28) Jones is looking for a green sweater.
Smith is looking for a pink hat.

∴∴∴∴ Jones is looking for something Smith is looking for (too).

(CO) x is looking for a P. inference to a common objective
y is looking for a Q. _______________

∴∴∴∴ x is looking for something y is looking for.

3. Opacity by Coercion

(32) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[sweater'(Q) ∧ seek'(Jones',Q)]

(33) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[↑sweater'(Q) ∧ seek'(Jones',Q)]

(39) Jones seeks a sweater
(∃Q) seek'(Jones',[λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)]])

a sweater
λΠ (∃Q) Π(λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)])

a
λΣ λΠ (∃Q)[Σ(Q) ∧ P(Q)]

sweater
↑sweater'

Q
Jones seeks itQ
seek'(Jones',Q)

Jones
Jones'

seeks itQ
seek'(Q)

seeks
seek'

itQ
Q

(40) Jones is looking for a green sweater, but Jones is not looking for a sweater.

(45) Exact Match Analysis (type adaptation)
seek'(x,P)

iff x’s search is successful just in case being found by x is in the extension of ∃P.

´

3

Indefinite Objects

(23b) (∃Q) [try'(Smith',(Qy) find'(Smith',y)) ∧ try'(Jones',(Qy) find'(Jones',y))]

(24) I owe you nothing. ____
∴∴∴∴ I owe you something.

(27b) (∃Q)[try'(Smith',(Qy) find'(Smith',y)) ∧ (Qy) try'(Jones',find'(Jones',y))]

(∃) x is looking for a P. ____
∴∴∴∴ x is looking for something.

(∃b) try'(x,(∃y)[P(y) ∧ find'(x,y)])
∴∴∴∴ (∃Q) try'(x,(Qy) find'(x,y))

(28) Jones is looking for a green sweater.
Smith is looking for a pink hat.

∴∴∴∴ Jones is looking for something Smith is looking for (too).

(CO) x is looking for a P. inference to a common objective
y is looking for a Q. _______________

∴∴∴∴ x is looking for something y is looking for.

3. Opacity by Coercion

(32) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[sweater'(Q) ∧ seek'(Jones',Q)]

(33) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[↑sweater'(Q) ∧ seek'(Jones',Q)]

(39) Jones seeks a sweater
(∃Q) seek'(Jones',[λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)]])

a sweater
λΠ (∃Q) Π(λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)])

a
λΣ λΠ (∃Q)[Σ(Q) ∧ P(Q)]

sweater
↑sweater'

Q
Jones seeks itQ
seek'(Jones',Q)

Jones
Jones'

seeks itQ
seek'(Q)

seeks
seek'

itQ
Q

(40) Jones is looking for a green sweater, but Jones is not looking for a sweater.

(45) Exact Match Analysis (type adaptation)
seek'(x,P)

iff x’s search is successful just in case being found by x is in the extension of ∃P.

´

3

Indefinite Objects

(23b) (∃Q) [try'(Smith',(Qy) find'(Smith',y)) ∧ try'(Jones',(Qy) find'(Jones',y))]

(24) I owe you nothing. ____
∴∴∴∴ I owe you something.

(27b) (∃Q)[try'(Smith',(Qy) find'(Smith',y)) ∧ (Qy) try'(Jones',find'(Jones',y))]

(∃) x is looking for a P. ____
∴∴∴∴ x is looking for something.

(∃b) try'(x,(∃y)[P(y) ∧ find'(x,y)])
∴∴∴∴ (∃Q) try'(x,(Qy) find'(x,y))

(28) Jones is looking for a green sweater.
Smith is looking for a pink hat.

∴∴∴∴ Jones is looking for something Smith is looking for (too).

(CO) x is looking for a P. inference to a common objective
y is looking for a Q. _______________

∴∴∴∴ x is looking for something y is looking for.

3. Opacity by Coercion

(32) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[sweater'(Q) ∧ seek'(Jones',Q)]

(33) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[↑sweater'(Q) ∧ seek'(Jones',Q)]

(39) Jones seeks a sweater
(∃Q) seek'(Jones',[λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)]])

a sweater
λΠ (∃Q) Π(λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)])

a
λΣ λΠ (∃Q)[Σ(Q) ∧ P(Q)]

sweater
↑sweater'

Q
Jones seeks itQ
seek'(Jones',Q)

Jones
Jones'

seeks itQ
seek'(Q)

seeks
seek'

itQ
Q

(40) Jones is looking for a green sweater, but Jones is not looking for a sweater.

(45) Exact Match Analysis (type adaptation)
seek'(x,P)

iff x’s search is successful just in case being found by x is in the extension of ∃P.

´

3

Indefinite Objects

(23b) (∃Q) [try'(Smith',(Qy) find'(Smith',y)) ∧ try'(Jones',(Qy) find'(Jones',y))]

(24) I owe you nothing. ____
∴∴∴∴ I owe you something.

(27b) (∃Q)[try'(Smith',(Qy) find'(Smith',y)) ∧ (Qy) try'(Jones',find'(Jones',y))]

(∃) x is looking for a P. ____
∴∴∴∴ x is looking for something.

(∃b) try'(x,(∃y)[P(y) ∧ find'(x,y)])
∴∴∴∴ (∃Q) try'(x,(Qy) find'(x,y))

(28) Jones is looking for a green sweater.
Smith is looking for a pink hat.

∴∴∴∴ Jones is looking for something Smith is looking for (too).

(CO) x is looking for a P. inference to a common objective
y is looking for a Q. _______________

∴∴∴∴ x is looking for something y is looking for.

3. Opacity by Coercion

(32) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[sweater'(Q) ∧ seek'(Jones',Q)]

(33) seek'(Jones',[λP (∃y)[sweater'(y) ∧ green'(y) ∧ P(y)]])
∴∴∴∴ (∃Q)[↑sweater'(Q) ∧ seek'(Jones',Q)]

(39) Jones seeks a sweater
(∃Q) seek'(Jones',[λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)]])

a sweater
λΠ (∃Q) Π(λP (∃y) [sweater'(y) ∧ Q(y) ∧ P(y)])

a
λΣ λΠ (∃Q)[Σ(Q) ∧ P(Q)]

sweater
↑sweater'

Q
Jones seeks itQ
seek'(Jones',Q)

Jones
Jones'

seeks itQ
seek'(Q)

seeks
seek'

itQ
Q

(40) Jones is looking for a green sweater, but Jones is not looking for a sweater.

(45) Exact Match Analysis (type adaptation)
seek'(x,P)

iff x’s search is successful just in case being found by x is in the extension of ∃P.

´

3

T. E. Zimmermann

(50) Jones seeks a green sweater
(∃P) [P ≤ [λx [green'(x) ∧ sweater'(x)]] ∧ seek'(Jones',P)]

a green sweater
λQ (∃P) [P ≤ [λx [green'(x) ∧ sweater'(x)]] ∧ Q(P)]

a
λP λQ (∃P) [P(P) ∧ Q(P)]

green sweater
λQ Q ≤ [λx [green'(x) ∧ sweater'(x)]]

green sweater
λx [green'(x) ∧ sweater'(x)]

green
green'

sweater
sweater'

P
Jones seeks itP

seek'(Jones',P)

… …

(51) (∃P) [P ≤ sweater'(x) ∧ seek'(Jones',P)]

• Unspecific objects
seek expresses a relation between a subject (the seeker) and an unspecific
object of search.

• Exact match
The relation expressed by seek holds true if the seeker’s goal is reached just
in case (s)he finds a specific object with the unspecific object as a property.

• Type coercion
The indefinite object is re-interpreted as (existentially) quantifying over un-
specific objects that are more general than the property expressed by its re-
strictor.

4. Specificity and Related Topics
4.1 Specific Readings of Indefinites

(66) Argument Lowering [naive version] Zimmermann (1993)
If ℜ is a relation between subjects and unspecific objects, then the de re
construal of ℜ is that relation that holds between individuals x and y
whenever ℜ holds between x and being y.

(66') Argument Lowering [Kaplanian version] Kaplan (1969, Zimmermann (to appear)
If ℜ is a relation between subjects and unspecific objects, then the de re
construal of ℜ is that relation that holds between individuals x and y
whenever ℜ holds between x and an unspecific object that is vivid for x and
individuates y.

(∃) x is looking for a P.
∴∴∴∴ There is at least one P.

4.2 Definite Descriptions

(69) Jones is looking for the boss.

4

T. E. Zimmermann

(50) Jones seeks a green sweater
(∃P) [P ≤ [λx [green'(x) ∧ sweater'(x)]] ∧ seek'(Jones',P)]

a green sweater
λQ (∃P) [P ≤ [λx [green'(x) ∧ sweater'(x)]] ∧ Q(P)]

a
λP λQ (∃P) [P(P) ∧ Q(P)]

green sweater
λQ Q ≤ [λx [green'(x) ∧ sweater'(x)]]

green sweater
λx [green'(x) ∧ sweater'(x)]

green
green'

sweater
sweater'

P
Jones seeks itP

seek'(Jones',P)

… …

(51) (∃P) [P ≤ sweater'(x) ∧ seek'(Jones',P)]

• Unspecific objects
seek expresses a relation between a subject (the seeker) and an unspecific
object of search.

• Exact match
The relation expressed by seek holds true if the seeker’s goal is reached just
in case (s)he finds a specific object with the unspecific object as a property.

• Type coercion
The indefinite object is re-interpreted as (existentially) quantifying over un-
specific objects that are more general than the property expressed by its re-
strictor.

4. Specificity and Related Topics
4.1 Specific Readings of Indefinites

(66) Argument Lowering [naive version] Zimmermann (1993)
If ℜ is a relation between subjects and unspecific objects, then the de re
construal of ℜ is that relation that holds between individuals x and y
whenever ℜ holds between x and being y.

(66') Argument Lowering [Kaplanian version] Kaplan (1969, Zimmermann (to appear)
If ℜ is a relation between subjects and unspecific objects, then the de re
construal of ℜ is that relation that holds between individuals x and y
whenever ℜ holds between x and an unspecific object that is vivid for x and
individuates y.

(∃) x is looking for a P.
∴∴∴∴ There is at least one P.

4.2 Definite Descriptions

(69) Jones is looking for the boss.

4

T. E. Zimmermann

(50) Jones seeks a green sweater
(∃P) [P ≤ [λx [green'(x) ∧ sweater'(x)]] ∧ seek'(Jones',P)]

a green sweater
λQ (∃P) [P ≤ [λx [green'(x) ∧ sweater'(x)]] ∧ Q(P)]

a
λP λQ (∃P) [P(P) ∧ Q(P)]

green sweater
λQ Q ≤ [λx [green'(x) ∧ sweater'(x)]]

green sweater
λx [green'(x) ∧ sweater'(x)]

green
green'

sweater
sweater'

P
Jones seeks itP

seek'(Jones',P)

… …

(51) (∃P) [P ≤ sweater'(x) ∧ seek'(Jones',P)]

• Unspecific objects
seek expresses a relation between a subject (the seeker) and an unspecific
object of search.

• Exact match
The relation expressed by seek holds true if the seeker’s goal is reached just
in case (s)he finds a specific object with the unspecific object as a property.

• Type coercion
The indefinite object is re-interpreted as (existentially) quantifying over un-
specific objects that are more general than the property expressed by its re-
strictor.

4. Specificity and Related Topics
4.1 Specific Readings of Indefinites

(66) Argument Lowering [naive version] Zimmermann (1993)
If ℜ is a relation between subjects and unspecific objects, then the de re
construal of ℜ is that relation that holds between individuals x and y
whenever ℜ holds between x and being y.

(66') Argument Lowering [Kaplanian version] Kaplan (1969, Zimmermann (to appear)
If ℜ is a relation between subjects and unspecific objects, then the de re
construal of ℜ is that relation that holds between individuals x and y
whenever ℜ holds between x and an unspecific object that is vivid for x and
individuates y.

(∃) x is looking for a P.
∴∴∴∴ There is at least one P.

4.2 Definite Descriptions

(69) Jones is looking for the boss.

4

4.3 Bare Plurals

(81a) Max is looking for a book on Danish cooking.
(b) Max is looking for books on Danish cooking.

(82)

 Max seeks books on Danish cooking
(∃P) [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P) ∧ seek'(Max',P)]

books on Danish cooking
λQ (∃P) [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P) ∧ Q(P)]

[indefinite]
λP λQ (∃P) [P(P) ∧ Q(P)]

books on Danish cooking
λP [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P)]

book on Danish cooking
λx [book'(x) ∧ on'(Danish'(cooking'))(x)]

book
book'

on Danish cooking
on'(Danish'(cooking'))

… …

[plural]
λQ λP [P ≤ Q ∧ plurality'(Q)]

P
Max seeks themP

seek'(Max',P)

… …

(83) plurality' = λP � (∃x) (∃x) [P(x) ∧ P(y) ∧ x ≠ y]

(84) Hans wanted to put belladonnas into the fruit salad, because he mistook them for [real] cherries.

(85) Hans wants to eat belladonnas and Hans mistakes them for cherries.

(86) want'(Hans',(∃x) (∃y) [belladonna'(x) ∧ belladonna'(y) ∧ x ≠ y ∧ eat'(Hans',x) ∧ eat'(Hans',y)])

4.3 Bare Plurals

(81a) Max is looking for a book on Danish cooking.
(b) Max is looking for books on Danish cooking.

(82)

 Max seeks books on Danish cooking
(∃P) [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P) ∧ seek'(Max',P)]

books on Danish cooking
λQ (∃P) [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P) ∧ Q(P)]

[indefinite]
λP λQ (∃P) [P(P) ∧ Q(P)]

books on Danish cooking
λP [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P)]

book on Danish cooking
λx [book'(x) ∧ on'(Danish'(cooking'))(x)]

book
book'

on Danish cooking
on'(Danish'(cooking'))

… …

[plural]
λQ λP [P ≤ Q ∧ plurality'(Q)]

P
Max seeks themP

seek'(Max',P)

… …

(83) plurality' = λP � (∃x) (∃x) [P(x) ∧ P(y) ∧ x ≠ y]

(84) Hans wanted to put belladonnas into the fruit salad, because he mistook them for [real] cherries.

(85) Hans wants to eat belladonnas and Hans mistakes them for cherries.

(86) want'(Hans',(∃x) (∃y) [belladonna'(x) ∧ belladonna'(y) ∧ x ≠ y ∧ eat'(Hans',x) ∧ eat'(Hans',y)])

4.3 Bare Plurals

(81a) Max is looking for a book on Danish cooking.
(b) Max is looking for books on Danish cooking.

(82)

 Max seeks books on Danish cooking
(∃P) [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P) ∧ seek'(Max',P)]

books on Danish cooking
λQ (∃P) [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P) ∧ Q(P)]

[indefinite]
λP λQ (∃P) [P(P) ∧ Q(P)]

books on Danish cooking
λP [P ≤ [λx [book'(x) ∧ on'(Danish'(cooking'))(x)]] ∧ plurality'(P)]

book on Danish cooking
λx [book'(x) ∧ on'(Danish'(cooking'))(x)]

book
book'

on Danish cooking
on'(Danish'(cooking'))

… …

[plural]
λQ λP [P ≤ Q ∧ plurality'(Q)]

P
Max seeks themP

seek'(Max',P)

… …

(83) plurality' = λP � (∃x) (∃x) [P(x) ∧ P(y) ∧ x ≠ y]

(84) Hans wanted to put belladonnas into the fruit salad, because he mistook them for [real] cherries.

(85) Hans wants to eat belladonnas and Hans mistakes them for cherries.

(86) want'(Hans',(∃x) (∃y) [belladonna'(x) ∧ belladonna'(y) ∧ x ≠ y ∧ eat'(Hans',x) ∧ eat'(Hans',y)])

(87)

 Hans wants to eat belladonnas
λx want'(Hans',(∃P) [P ≤ belladonna' ∧ plurality'(P) ∧ (∀y) [P(y) → eat'(Hans',y)]])

Hans
Hans'

wants to eat belladonnas
λx want'(x,(∃P) [P ≤ belladonna' ∧ plurality'(P) ∧ (∀y) [P(y) → eat'(x,y)]])

wants
λP λx want'(x,P(x))

eat belladonnas
λx (∃P) [P ≤ belladonna' ∧ plurality'(P) ∧ (∀y) [P(y) → eat'(x,y)]]

belladonnas
λQ (∃P) [P ≤ belladonna' ∧ plurality'(P) ∧ Q(P)]

… …

P
[to] eat themP

λx (∀y) [P(y) → eat'(x,y)]

eat
λP λx [(∀y) [P(y) → eat'(x,y)]

eat
eat'

(89)
 Hans mistakes themP for cherries

(∃Q) [Q ≤ cherry ∧ plurality'(Q) ∧ (∀y) [P(y) → mistake'(y)(Q)(Hans')]]

cherries
λQ (∃Q) [Q ≤ cherry ∧ plurality'(Q) ∧ Q(Q)]

… …

Q
Hans mistakes themP for themQ

(∀y) [P(y) → mistake'(y)(Q)(Hans')]

Hans
Hans'

mistakes themP for themQ

λx (∀y) [P(y) → mistake'(y)(Q)(x)]

mistakes
λQ λx (∀y) [P(y) → mistake'(y)(Q)(x)]

mistakes
λP λQ λx (∀y) [P(y) → mistake'(y)(Q)(x)]

mistakes
mistake'

themP

P

[for] them
Q

(90) mistake' = λy λP λx [believe'(x,P(y)) ∧ ¬P(y)]

 Hans wants to eat belladonnas
(∃P) [P ≤ belladonna' ∧ plurality'(P) ∧

(∃Q) [Q ≤ cherry ∧ plurality'(Q) ∧ mistake'(P)(Q)(Hans')]]]

belladonnas
λQ (∃P) [P ≤ belladonna' ∧

plurality'(P) ∧ Q(P)]

… …

P
[want'(Hans',(∀y) [P(y) → eat'(Hans',y)]) ∧

(∃Q) [Q ≤ cherry ∧ plurality'(Q)
∧ mistake'(P)(Q)(Hans')]]

Hans wants to eat themP

want'(Hans',(∀y) [P(y) → eat'(Hans',y)])

Hans
Hans'

wants to eat themP

λx want'(x,(∀y) [P(y) → eat'(x,y)])

wants
λP λx want'(x,P(x))

[to] eat themP

λx (∀y) [P(y) → eat'(x,y)]

… …

and
∧ (89)

